697 2024.05.30
本期電子報 » 活動預告

【統計系|段錦泉院士學術專題演講】

◆ 主講人:Jin-Chuan Duan (段錦泉院士)
Chairman of Criat and ADBIZA
Professor Emeritus, National University of Singapore
國立政治大學國際金融學院兼任講座教授

◆ 題目:Machine Learning Interpretable Financial Models via Sequential Monte Carlo Optimization

◆ 時間:6月3日 (一) 下午1:30

◆ 地點:逸仙樓101教室

◆ 摘要:
Utilizing big data without a theoretical or commonly accepted conceptual basis has been proven technically feasible and may work well in many applications. But black-box machine learning typically fails to meet managerial needs and/or compliance requirements due to its lack of interpretability in a conventional sense. In principle, one could directly machine-learn interpretable conventional models instead of searching for ways to interpret black boxes afterwards. However, Standard approaches to constructing conventional models are ill-equipped to handle high-dimensional data arising from, say, digital footprints. This talk is about expanding the realm of interpretable models through machine learning via sequential Monte Carlo (SMC) optimization. First, I will illustrate the general idea behind SMC optimization and show its working using a simple example. Next, I will demonstrate how to construct a conventional hedonic housing price model through finding an optimal stable subset of interpretable features out of over 190,000 potential variables arising from interacting standard data features. The resulting parsimonious model is not only naturally interpretable but also outperforms large neural networks. Finally, I will discuss my ongoing research work on finding the optimal stable decision tree in a random forest.

Background reading: "Sequential Monte Carlo optimization and statistical inference" Duan, J.-C., Li, S., & Xu, Y. (2022). Wiley Integrative Reviews: Computational Statistics, e1598. https://doi.org/10.1002/wics.1598.

 

【和泰汽車|TOYOTA WAY 菁英研習營】
【企研所(MBA)|六十週年研討會】
【UNIQLO|全球儲備菁英U先培訓營】
【銀行保險研討會—因應銀行通路數位化下的挑戰與機會】
【台灣管理學界策略共識會議—博士班經營與學院學術發展】
【問題解決人才媒合會】
政大商學院 |  商學院職涯發展與媒合平台 |  OSAAS 粉絲團

政大商學院學生事務與校友服務辦公室

政大商人報每週五發布本院各項訊息,提供校內外人士參閱,歡迎師生多加利用。

版權歸發行者所有,未經確認授權,嚴禁轉貼節錄。

加OSAAS為LINE好友